رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

خلاصه روابط و فرمول های درس دینامیک ماشین رشته مکانیک

خلاصه روابط و فرمول های درس دینامیک ماشین رشته مکانیک

خلاصه-روابط-و-فرمول-های-درس-دینامیک-ماشین-رشته-مکانیکدانلود مجموعه روابط و فرمول های درس دینامیک ماشین رشته مکانیک به صورت خلاصه، در قالب فایل pdf جزوه دست نویس اسکن شده و خوانا و در حجم 5 صفحه. این فایل شامل 5 صفحه خلاصه نکات و فرمول ها و روابط درس دینامیک ماشین به صورت دست نویس و در قالب فایل pdf است ...


دانلود فایل


مقاله بررسی مبحث دینامیک

مقاله بررسی مبحث دینامیک در 26 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 1
فرمت فایل doc
حجم فایل 51 کیلو بایت
تعداد صفحات فایل 26
مقاله بررسی مبحث دینامیک

فروشنده فایل

کد کاربری 2102
کاربر

مقاله بررسی مبحث دینامیک در 26 صفحه ورد قابل ویرایش

علم دینامیک شاخه‌ای از مکانیک است که در مورد حرکت اجسام در اثر اعمال نیرو بحث می‌کند. معمولاً در مهندسی، دینامیک پس از استاتیک مورد مطالعه قرار می گیرد و موضوع آن تاثیر نیروها بر اجسام ساکن است. دینامیک دارای دو بخش مجزا می باشد: سینماتیک، که عبارت از مطالعه حرکت بدون در نظر گرفتن عامل آن یعنی نیرو است و سینتیک، علمی است که نیروهای وارد بر جسم را به حرکت ناشی از آنها ارتباط می دهد. دانشجوی مهندسی در می یابد که درک کامل دینامیک، او را به یکی از مفید ترین و قوی ترین ابزرهای تحلیل در مهندسی تجهیز می کند.

موضوع علم دینامیک در مقایسه با استاتیک از نظر تاریخی، نسبتا جدید است. شروع درک دینامیک با استفاده از اصول استدلالی به گالیله (1642- 1564) نسبت داده می شود که در مورد سقوط آزاد اجسام، حرکت روی سطح شیبدار و حرکت پاندول مشاهدات دقیقی را انجام داد. وی در زمینه ارائه روشی علمی برای تحقیقات ودر مسائل فیزیکی مسئولیت بزرگی را متحمل شده است.گالیله به جهت نپذیرفتن اعتقادات زمان خود که مبتنی بر فلسفه ارسطویی بود، مثلاً این عقیده که اجسام سنگین‌تر سریعتر از اجسام سبک تر سقوط می کنند پیوسته مورد انتقاد شدید قرار داشت. فقدان روشهای دقیق برای اندازه گیری زمان از موانع جدی گالیله بود و پیشرفتهای مهم بعدی در دینامیک در انتظار اختراع ساعت پاندولی توسط هویگنس در سال 1657 بود.

نیوتن (1727- 1642) بر اساس تحقیقات گالیله توانست فرمولهای دقیقی را برای قوانین حرکت ارائه کند و در نتیجه، دینامیک را در جایگاه استواری قرار دهد. کار مشهور نیوتن در اولین ویرایش کتابش با عنوان اصول منتشر شد، که معمولاً از آن به عنوان یکی از بزرگترین مقالات علمی ثبت شده یاد می‌شود. نیوتن علاوه بر بیان قوانین حاکم بر حرکت ذرات اولین کسی بود که قانون جاذبه عمومی را به طور صحیح فوموله کرد. با اینکه توصیف ریاضی او دقیق بود، او حس می‌کرد که انتقال خارجی نیروی جاذبه بدون پشتیبانی یک واسطه کار بیهوده ای است. دانشمندانی که پس از دوره نیوتن مشارکت‌های مهمی در توسعه علم مکانیک داشتند عبارتند از: اولر، دالامبر، لاگرانژ، لاپلاس،پوآنسو، کوریولیس، انیشتین و دیگران

از نظر کاربردهای مهندسی دینامیک علم جدیدتری است. فقط از زمانی که ماشینها و سازه هایی با سرعت زیاد و شتاب های قابل توجه به کار افتاده اند محاسبات بر اساس اصول دینامیک در مقایسه با اصول استاتیک ضروری تر شد. امروزه رشد سریع تکنولوژی افزایش کاربردهای اصول مکانیک به ویژه دینامیک را طلب می‌کند. این اصول مبنای تحلیل و طراحی سازه های متحرک، سازه های ثابت با بار ضربه ای، رباتها، سیستمهای کنترل اتوماتیک، راکتها، موشکها، فضاپیماها، وسایل حمل و نقل زمینی و هوایی، بالستیک الکترونیکی در دستگاههای الکتریکی، و انواع ماشینها نظیر توربینها، پمپها، موتورهای پیستونی، بالابرها، ماشینهای ابزار و غیره می‌باشد. دانشجویانی که به یک و یا چند مورد از فعالیتهای مذکور علاقه مند هستند، نیاز مستمر به کارگیری اصول و مبانی دینامیک را در خواهند یافت.

فضا ناحیه هندسی اشغال شده توسط جسم می باشد. موقعیت در فضا بوسیله اندازه‌گیری‌های خطی و زاویه ای نسبت به سیستم مرجع هندسی تعیین می شود. چارچوب اساسی سیستم مرجع در قوانین مکانیک نیوتن عبارت است از سیستم اینرسی اصلی یا دستگاه مرجع نجومی، که سیستم مختصاتی مجازی با محورهای متعامد می‌باشد و فرض می شود که هیچگونه انتقال یا دورانی در فضا نداشته باشد. اندازه‌گیری‌ها نشان می دهند که اعتبار قوانین مکانیک نیوتنی در این سیستم مختصات تا هنگامی است که سرعتها در مقایسه سرعت نور که برابر km/s 000،300 یا mi/s 000،186 می باشد قابل صرفنظر کردن باشند. به اندازه گیری هایی که نسبت به این دستگاه صورت می گیرند مطلق گفته می شود و این سیستم مرجع در فضا «ثابت» در نظر گرفته می شود. دستگاه مرجع الصاقی به سطح زمین دارای حرکت پیچیده ای در سیستم مرجع اصلی است و بنابراین باید بر مبنای اندازه گیریهای انجام شده در دستگاه مرجع روی زمین، تصحیحاتی در معادلات اساسی مکانیک صورت گیرد. مثلاً حرکت مطلق زمین در محاسبه مسیر راکتها و پروازهای فضایی پارامتر مهمی محسوب می‌شود. در بیشتر مسائل مهندسی مربوط ب ماشینها و سازه هایی که بطور ثابت در سطح زمین مستقر شده اند، تصحیحات فوق الذکر کوچک بوده و می توان از آن صرفنظر کرد. در چنین مسائلی قوانین مکانیک را می توان مستقیما در اندازه گیریهای انجام شده نسبت به زمین بکار برد، که در عمل چنین اندازه گیریهای مطلق تلقی می شوند.

زمان عبارت است از سنجش وقایع متوالی که در مکانیک نیوتنی به عنوان کمیت مطلق در نظر گرفته می شود.

جرم عبارت از سنجش کمی اینرسی یا مقاومت در مقابل تغییر حرکت یک جسم است. همچنین جرم را می توان کمیت مادی موجود در یک جسم در نظر گرفت که سبب جاذبه می شود.

نیرو بردار عمل یک جسم بر جسم دیگر است. خواص نیروها در کتاب استاتیک به طور کامل مورد بحث قرار گرفته است.

ذره جسمی است با ابعاد ناچیز. همچنین هنگامی که ابعاد جسمی در توصیف حرکت آن یا عمل نیروهای وارد بر آن بی تاثیر باشند با آن می توان بصورت یک ذره برخورد کرد. مثلاً برای توصیف مسیر پرواز هواپیما می توان آن را بصورت یک ذره در نظر گرفت.

جسم صلب جسمی است که تغییر شکل آن در مقایسه با ابعاد کلی و یا تغییر مکان جسم به عنوان یک کل ناچیز باشد. به عنوان مثال از فرض صلبیت می توان حرکت خمشی کوچک لبه بال هواپیمای در حال پرواز در یک هوای آشفته را در توصیف حرکت کلی هواپیما در سراسر مسیر پروازش کاملا بی تاثیر دانست. به همین جهت این فرض که هواپیما یک صلب است هیچگونه مشکلی ایجاد نمی کند. از طرفی، اگر منظور مسئله یافتن تنشهای داخلی موجود در بال در اثر تغییر بارهای دینامیکی باشد، در آن صورت باید مشخصات تغییر شکل سازه در نظر گرفته شود، و به همین دلیل هواپیما را نمی توان بصورت جسم صلب در نظر گرفت.

بردار و اسکالر کمیتهایی هستند که در کتاب استاتیک مورد بحث بسیار قرار گرفته اند و اکنون باید فرق آنها را به روشنی مشخص کرد. کمیتهای اسکالر با حروف نازک و کمیتهای برداری با حروف سیاه نشان داده می شوند. در نتیجه v اندزه اسکالری بردار v است. بنابراین استفاده از علائم خاص بسیار مهم است، مثلاً خط تیره زیرین در v که در نوشتن تمام بردارها می توان آن را جایگزین حروف چاپی سیاه کرد. برای دوبردار غیر موازی، باید به خاطر داشت که V1+V2 و V1+V2 دارای دو مفهوم کاملا متفاوت می‌باشند.

قیود حرکت و درجات آزادی

کلاً هر ذره در دو بعد با دو متغیر (درجة آزادی) توصیف می‎شود و در مجموع برای N ذره، احتیاج به N2 درجة آزادی داریم. اما معمولاً این درجات آزادی مستقل از هم نیستند بلکه به گونه ای به یکدیگر مربوط اند. نمونه ای از این ارتباط را در مثال بخش قبل برای حرکت روی سطح شیبدار دیدیم.

کلاً روش سیستماتیکی که برای نوشتن این گونه قیدها وجود دارد آن است که عامل ایجاد آن قید را شناخته و اثر آن را روی درجات آزادی بررسی کنیم. به عنوان مثال:

دو جسم به جرمهای m2 , m1 را به دو سر قرقره ای با طنابی به جرم ناچیز متصل کرده ایم، شتاب حرکت هر یک و نیروی کشش نخ را محاسبه کنید. اگر مسئله، بیشتر از یک جسم داشته باشد برای هر یک جداگانه نمودار جسم آزاد کشیده و معادلات حرکت را بررسی می کنیم:

چون طناب جرم ندارد و T' , T باید مساوی باشند زیرا اختلاف آنها باید صفر شود.

a2 , a1 شتابهای ذرات 1 و 2 هستند.

زیرا قرقره ساکن است T- m1g= m1a1

دو معادلة 1 و 2 دارای سه مجهول هستند T و a2 , a1 T- m2g= m2a2

T''=T+T'=2T

برای حل این دو معادله با سه مجهول یک رابطه قیدی بین a2 , a1 نیاز داریم. «روابط قیدی اصولاً روابطی مستقل از دینامیک هستند و از معادلات نیوتون به دست نمی آیند اما با آنها سازگارند.» این رابطة قیدی از اینجا به دست می‎آید که واقعاً دو درجه آزادی سیستم (یک درجة آزادی مربوط به هر یک از جرمهای یک و دو) به واسطه وجود طناب به یکی تقلیل پیدا کرده زیرا اگر مکان ذرات را نسبت به محور قرقره با y2 , y1 مشخص کنیم:

طول طناب = ثابت = y1 + y2

پس عملاً اگر y1 تعیین گردد، y2 نیز به دست خواهد آمد، پس یک درجه آزادی بیشتر نداریم با دوبار مشتق گیری از رابطة فوق به رابطة بین شتابها می رسیم:

a1+a2=0

حال سه معادله و سه مجهول را حل می کنیم:

T=m1(g+a1) = m2(g+a2)

a1 = -a2





مثال: شتاب حرکت m2 , m1 و کشش نخ و عکس العمل سطح را به دست آورید. اگر خود سطح شیبدار دارای جرم M باشد و کل مجموعه روی یک ترازو قرار گیرد ترازو چه عددی را نشان خواهد داد؟ سطح شیب را بدون اصطکاک فرض کنید.

حل: الف) نمودارهای جسم آزاد

در اینجا با توجه به بحثهای قبلی، کشش را در کل طول طناب یکسان فرض کرده ایم و برای رسم نمودار 3 نیروهای عکس العمل N و نیروهای وارد به قرقره را نیز در نظر گرفته ایم که مجموع دو نیروی T1 رسم شده در واقع نیرویی است که به پایة قرقره وارد می‎شود.

معادلات نیوتون

a1y=0 : قید حرکت روی سطح



a2y= -a1x : قید ثابت بودن طول طناب و T-m2g = m2a2y

T1 = T = طناب بدون جرم است و

پس با در نظر گرفتن قیدهای نوشته شده تعداد مجهولات با تعداد معادلات مساوی می‎شود و مسئله قابل حل است.



(حذف a1x) T=m2 (g-a1x)

که در حالت حدی به همان جواب مثال قبلی بدل می‎شود.

جهت دریافت فایل مقاله بررسی مبحث دینامیکلطفا آن را خریداری نمایید


کنترل اینمیشن با دینامیک

در این مقاله مزایا و معایب کینماتیک و دینامیک در کنترل حرکت برای متحرک سازی کاراکترهای سه بعدی بحث می کنیم در این مقاله یک سیستم کنترل حرکت براساس دینامیک ارائه میدهیم برنامه های چنین سیستمی بخصوص در محیط راه رفتن و چنگ انداختن می‌باشند این نشان می دهد که شبیه سازی نوشتن یک نامه یک پروسه مناسب دینامیک است برای اینمیشن دست آمدت علم حرکت وکینما
دسته بندی کامپیوتر و IT
بازدید ها 1
فرمت فایل doc
حجم فایل 39 کیلو بایت
تعداد صفحات فایل 35
کنترل  اینمیشن با دینامیک

فروشنده فایل

کد کاربری 2106
کاربر

کنترل اینمیشن با دینامیک

کنترل اینمیشن با دینامیک

در این مقاله مزایا و معایب کینماتیک و دینامیک در کنترل حرکت برای متحرک سازی کاراکترهای سه بعدی بحث می کنیم در این مقاله یک سیستم کنترل حرکت براساس دینامیک ارائه میدهیم .

برنامه های چنین سیستمی بخصوص در محیط راه رفتن و چنگ انداختن می‌باشند . این نشان می دهد که شبیه سازی نوشتن یک نامه یک پروسه مناسب دینامیک است برای اینمیشن دست آمدت علم حرکت وکینماتیک قابل اطمینان تر است شکل تغییر فرم سطح نیز بصورت کامل مورد توجه قرار گرفته است .

لغات کلیدی : کینماتیک یا علم حرکت ، دینامیک کاراکترهای سه بعدی راه رفتن و نوشتن بدست آوردن و چنگ زدن .

معرفی :

در این مقاله ما مشکل مهم حالت گرفتن بازوها و حرکت دادن در انیمیشن انسان را مورد بررسی قرار می دهیم : چه زاویه ای برای شانه ها داشته باشد . آرنج و مچ لازم است در حالیکه دست باید به یک موقعیت خاصی ودر

نقطه ای از فضا حرکت کند ؟

چگونه بازو را بصورت واقعی برای مثلا نوشتن یک نامه متحرک سازی کنیم؟

این اساسا یک مشکل کنترل حرکت است . برای حل این مشکل راههای مختلفی توضیح داده شده و کلاسه بندی شده اند .

در قدم اول تست و پویو در سال 1988 مدلها را در مدلهای کنیماتیک دینامیک کلاسه بندی کردند مدلهای کینماتیک حرکت را از موقعیت ها ایجاد می کردند وهمچنین از روی سرعت و شتاب مدلهای دینامیک حرکت را با یکسری فشارها و چرخشها توصیف می کردند که از اطلاعات کینماتیک بدست
می‌آمد.

سیستمها همچنین می توانند براساس خصوصیات حرکت هایی که اجازه دادند کلاسه بندی شوند . برای مثال ژلتور ( 1985) سیستمهای انیمیشن را با راهنمایی و مرحله متحرک ساز یاسیستم مرحله اجرا کلاسه بندی کرد .

راهنمایی : در این سیستمها متحرک ساز بصورت کامل جزئیات حرکت را تعریف می کند .

در این جا هیچ نوع تعریف کار بردی برا ی هماهنگی با حرکت یا هماهنگی نیست . سیستمهای راهنمایی شامل ضبط حرکت ، الحلق شکل ، سیستمهای

تغییر شکل کلیدی و سیستمهای براساس ثبت می باشند .

مرحله متحرک ساز :

این سیستمها بصورتی تعریف شده اند که به متحرک ساز اجازه ایجاد حرکت الگوریتمی را می دهند .

مرحله کاری : این سیستمها باید برای اجرای برنامه های موتور برای کنترل کاراکترها زمانبندی شوند .

کینماتیک ( علم حرکت ):

مشکل کینماتیک های مستقیم شامل پیدا کردن موقعیت و چرخش یک کار دستی با توجه به منبع ثابت شده سیستم هماهنگ مانند یک عملگر زمانی بدون توجه به فشارها ویا لحظه های ایجاد حرکت می باشد . یک کینماتیک نوعی یک انیمیشن پارامتر یک است که شامل مشخهصه هایی برای بعضی موقعیتهای کلیدی زاویه های مختلف برای اتصال های کاراکتر اسکلتی دارد .

یک اسکلت بصورت مجموعه قطعات بهم متصل شده تعریف می شود که برابر با اعضا بدن و مفاصل می باشد مفصل تقاطع دو قطعه است یعنی یک نقطه ای اسکلتی است هایی که بازویی که متصل است به آن نقطه حرکت می کند زاویه بین دو قطعه زاویه مفصل نامیده می شود .

یک مفصل حداکثر سه مدل زاویه می گیرد . انحناء چرخش محوری و حرکت پیچش حرکت انحناء یک چرخش دست است که با مفصل تاثیر می گردد و روی حرکت تمام بازوهای متصل به این مفصل تاثیر می گذارد این حرکت انحناء با نقطه اتصال مفصل و محور انحناء که تعریف شده است رابطه دارد .

چرخش محوری یک گردش از محور انحناء هول بازو ایجاد می کند که با مفصل تاثیر می گیرد .

پیچ خوردگی یک پیچش روی بازها ایجاد می کند که با مفصل تاثیر می گیرد حرکت محور پیچش شباهت به حرکت چرخش محوری دارد .

این یک ضرورت است که ما نقاط ثابت داشته باشیم برای مثال برای ساخت یک کاراکتر نشسته یک نقطه ثابت باید برای پاها تعریف شود تا از بالا رفتن کل پا ( لنگ ) جلوگیری کند .

برای راه رفتن نقطه ثابت باید از یک پایه های دیگر تغییر کند در یک سکانس انیمیشن نقطه ثابت ممکن است تغییر کند .

هر موقعیت کلیدی شامل موقعیت باز دیگر در یک بازه زمانی است بنابراین

یک سکانس انیمیشن از یک سری موقعیتهای کلیدی تشکیل می شود حرکت اسکلت توسط درج مقدار زاویه هر مفصل که برای اسکلت تعریف شده است محاسبه می شود که این کار توسط نوارهای باریک انجام می شود .

تغییر نوارهای منحنی با تغییر پارامترهای منحنی ممکن است در کل برای ساخت یک سکانس انیمیشن لازم است که :

1- تصمیم گیری در مورد حرکت بازیگر بنابه داستان سکانس

2- تعریف زاویه های مفصلی برای زمانهای مشخص شده

3- تعیین پارامترهای نواری برای الحاق

شکل کینماتیک معکوس شامل تعیین مفصلهای متغییر که موقعیت و جهت آخر کنترل کننده را با توجه به سیستم متعادل مرجع می گیرد . این مشکل کلیدی است چون متغیرهای مستقل در یک ربات ویک بازیگر مصنوعی متغیرهای مفصلی هستند .

متاسفانه تغییر شکل موقعیت از کار تیشن تا مفصل مربوط عموما یک راه حل بسته ندارد .

بهرحال یکسری ترتیب های خاص محورهای مفصلی که برای راه حلهای بسته موجود است وجود دارد .

برای مثال کنترلرها 6 مفصل دارند . چایی که سه مفصل نزدیکتر به آخرین تاثیر گذار همه پیچیده هستند ومحورهای آنها حول یک نقطه یعنی مچ است همانطور که توسط فیتر استون توضیح داده شد ، مشکل مشکل می تواند به دو مشکل شکسته شود :

1- پیدا کردن مقدار اولین سه متغیرهای مفصل برای تعیین درست موقعیت مچ

2- پیدا کردن مقدار زاویه های مفصل مچ که تاثیر گذار نهایی را بصورت صحیح بچرخاند و چرخش محاسبه شده مچ را از شماره 1 بگیرد .

برای ایجاد یک بازیگر نشسته روی صندلی ، بعنوان مثال لازم است که اتصالات پا مشخص شود وهمچنین اتصالات روی دست و استخوانها .

یک سیستم که اجازه تعیین فقط که محدود در یک بازه زمانی را دارد یک روش مناسب برای حل این مشکل نیست . با دلر راتال ( 1987) یک الگوریتم معرفی کرد برای حل توقفهای مختلف که در کینماتیک استفاده می شدند در سیستم آنها کار بر باید همیشه اجرای هر وقفه د ریک مورد رخدادرا که همه آنها نمی توانند مشابه هم باشند را تعیین کند .

جهت دریافت فایل کنترل اینمیشن با دینامیک لطفا آن را خریداری نمایید