دسته بندی | کامپیوتر و IT |
بازدید ها | 3 |
فرمت فایل | doc |
حجم فایل | 95 کیلو بایت |
تعداد صفحات فایل | 26 |
منابع تغذیه
مقدمه
1: مروری بر منابع تغذیه
1-1: دلیل انتخاب SMPS و مقایسه آن با منابع تغذیه خطی
2-1: چگونگی تنظیم خروجی در SMPS
3-1: یک نمونه SMPS دارای چه مشخصاتی است؟
4-1: کاربرد دیگر SMPS ها به عنوان اینورتر یا UPS
5-1: انواع مختلف منبع تغذیه سوئیچینگ
2: روشهای کنترل در منابع تغذیه
1-2: کنترل شده حالت ولتاژ
2-2: کنترل شده حالت جریان
3: قطعات یک منبع تغذیه سوئیچینگ
1-3: هسته و سیم پیچ
2-3: ترانزیستور
3-3: MOSFET های قدرت
4-3: یکسوکننده ها
5-3: خازنها
منابع
منابع تغذیه
مقدمه
بعضی از تجهیزات الکترونیکی نیاز به منابع تغذیه با ولتاژ و جریان بالا دارند. بدین منظور باید ولتاژ AC شهر توسط ترانسفورماتور کاهنده به ولتاژ پایینتر تبدیل و سپس یکسوسازی شده و به وسیله خازن و سلف صاف و DC شود.
تا سال 1972 ، منابع تغذیه خطی برای بیشتر دستگاههای الکترونیکی مناسب بودند. اما با توسعه کاربرد مدارهای مجتمع ، لازم شد که خروجی این مدارها در برابر تغییرات جریان و یا ولتاژ شبکه برق بیشتر تثبیت گردد. آی سی های خانواده TTL به ولتاژ کاملا تثبیت شده 5V احتیاج دارند. به منظور بدست آوردن ولتاژ ثابت تر، یک سیستم کنترل فیدبک در آی سی ها ی تثبیت کننده به کار برده می شود. تا سال 1975 ، آی سی های موجود مثل 723 و CA3085 قادر به تثبیت ولتاژ ثابت مورد نظر نمونه برداری می کردند. این منابع، منابع تغذیه تثبیت شده خطی نامیده می شد.
امروزه تراشه های یکپارچه تنظیم ولتاژ برای جریانهای تا 5A در دسترس می باشد. این تراشه ها مناسب می باشند. اما راندمانی زیر 50% دارند و تلفات حرارتی آنها در بار کامل زیاد است.
منابع تغذیه سوئیچینگ دارای راندمان بالایی می باشند. این منابع در سال 1970 هنگامی که ترانزیستورهای سوئیچینگ سرعت بالا با ظرفیت زیاد در دسترس قرار گرفت، ابداع شدند. ولتاژ خروجی منابع تغذیه سوئیچینگ به وسیله تغییر چرخه کار (Duty Cycle) یا فرکانس سیگنال ترانزیستورهای کلید زنی کنترل می شود. البته می توان با تغییر هم زمان هر دوی آنها نیز ولتاژ خروجی را کنترل نمود.
یک منبع تغذیه سوئیچینگ (SMPS) شامل منطق کنترل (Control Logic) و نوسان ساز می باشد. نوسان ساز سبب قطع و وصل عنصر کنترل کننده (Control Element) می گردد. عنصر کنترل کننده معمولا یک ترانزیستور کلید زنی ، یک سلف و یک دیود می باشد. انرژی ذخیره شده در سلف با ولتاژ مناسب به بار واگذار می شود، با تغییر چرخه کار یا فرکانس کلید زنی، می توان انرژی ذخیره شده در هر سیکل و در نتیجه ولتاژ خروجی را کنترل نمود. با قطع و وصل ترانزیستور کلیدزنی ، عبور انرژی انجام و یا متوقف می شود. اما انرژی در ترانزیستور تلف نمی شود. با توجه به اینکه فقط انرژی مورد نیاز برای داشتن ولتاژ خروجی با جریان مورد نظر، کشیده می شودع راندمان بالایی بدست می آید. انرژی به صورت مقطعی تزریق می شود. اما ولتاژ خروجی به وسیله ذخیره خازنی ثابت باقی می ماند.
1
1-1: دلیل انتخاب SMPS و مقایسه آن با منابع تغذیه خطی:
انتخاب بین یک منبع تغذیه خطی یا سوئیچینگ می تواند بر اساس کاربرد آنها انجام می شود. هر یک مشخصات، مزایا و معایب خاص خود را دارند، همچنین حوزه های متعددی وجود دارد که تنها یکی از این دو نوع می تواند مورد استفاده قرار گیرند و یا کاربردهایی که یکی از بر دیگری برتری دارد.
مزایای منابع تغذیه خطی:
1- نخست سادگی (طرح مدار بسیار ساده است و با قطعات کمی به راحتی اجرا می شود).
2- دوم قابلیت تحمل بار زیاد نویز ناچیز یا کم در خروجی و زمان پاسخ دهی بسیار کوتاه.
3- برای توان های کمتر از 10W ارزانتر از مدارهای مشابه سوئیچینگ می شود.
معایب منابع تغذیه خطی:
1- تنها به صورت رگولاتور کاهنده قابل کاربرد هستند(ورودی حداقل باید 2 تا 3 ولت از خروجی بیشتر باشد).
2- عدم انعطاف پذیری تغذیه، افزودن هر خروجی مستلزم اضافه کردن سخت افزار زیادی است.
3- بهره متوسط چنین منابعی کم و نوعا 30% تا 40% است. این تلفات توان در ترانزیستور خروجی تولید حرارت می کند و نیاز به ترانزیستور قوی تر را مطرح می کند،در توانهای کمی بالا نیاز به گرماگیر بر روی ترانزیستورها دارد.
تمامی این معایب در منابع تغذیه های سوئیچینگ رفع شده است:
1- افزایش راندمان به حدود 68% تا 90% کارکرد ترانزیستور در نواحی قطع و اشباع به انتخاب حرارت گیر یا خنک کننده و ترانزیستور کوچکتر منجر شده است.
2- به دلیل اینکه قدرت خروجی از یک ولتاژ DC بریده شده که به شکل AC در یک قطعه مغناطیسی ذخیره می شود، تامین می گردد. لذا با اضافه کردن تنها یک سیم پیچ می توان خروجی دیگری را بدست آورد، که در مقام مقایسه بسیار ارزانتر و ساده تر تمام می شود.
جهت دریافت فایل منابع تغذیه لطفا آن را خریداری نمایید
پروژه خازن گذاری در شبکه های فشار متوسط در حضور منابع پراکنده :در سالهای اخیر اقدامات مختلفی برای بهینه سازی و تغییر سیستم های قدرت از ساختار جدیدی تحت عنوان ” تجدید ساختار ” صورت گرفته است. محدود شدن شبکه های توزیع بین تولید و انتقال از یک سو و مراکز بار از سویی دیگر آن را تبدیل به یک شبکه پسیو نموده است. لیکن استفاده ازواحدهای تولیدی کوچک (تولیدات پراکنده ) همچون توربینهای گازی، بادی، پیلهای سوختی و. .. در سالهای اخیر باعث تغییر وضعیت این شبکه از یک شبکه پسیو به یک شبکه اکتیو گردیده است. تحقیقات انجام شده توسط EPRI نشان می دهد که تا سال ۲۰۱۰ نزدیک به ۲۵ درصد تولیدات را، تولیدات پراکنده تشکیل خواهند داد که این رقم طبق تحقیقات NGF تا ۳۰ درصد نیز پیش بینی شده است. بنابراین باید دید چه عواملی سبب شده تا نظریه تولیدات پراکنده به وجود آید؟شاید مهمترین مزیت، نزدیکی به مصرف کننده و در نتیجه کاهش و یا حذف هزینه های مربوط به انتقال و توزیع باشد. در کنار آن می توان به حذف محدودیت مکانی و جغرافیایی تولیدات کوچک نسبت به نیروگاه های بزرگ, عدم نیاز به ریسک بالا، زمان نصب کمتر، محیط زیست پاکتر، کیفیت و قابلیت اطمینان بیشتر، پیشرفت تکنولوژی در زمینه ساخت ژنراتورهای کوچک با توان تلیدی بالاو استفاده از انرژیهای تجدیدناپذیر مانند باد و خورشید اشاره کرد. استفاده از تولیدات پراکنده سوالاتی، در رابطه با تاثیر آنها بر سیستم های کنترل و بهره برداری شبکه های توزیع را در ذهن تعریف جامع و کاملی از تولیدات پراکنده، با ملامحظه تعدادی عوامل کلیدی می باشد.
در قسمت دوم مقاله به معرفی اجمالی انواع تولیدات پراکنده پرداخته می شود.
فهرست مطالب
فصل اول
منابع تولید پراکنده
۱-۱- مقدمه
۱-۲- تعریف تولیدات پراکنده
۱-۲-۱- هدف
۱-۲-۲- مکان
۱-۲-۳- مقادیر نامی
۱-۲-۵- فناوری
۱-۲-۶- عوامل محیطی
۱-۲-۷-روش بهره برداری
۱-۲-۸- مالکیت
۱-۲-۹- سهم تولیدات پراکنده
۱-۳-معرفی انواع تولیدات پراکنده
۱-۳-۱- توربینهای بادی
۱-۳-۲ واحدهای آبی کوچک
۱-۳-۳- پیلهای سوختی
۱-۳-۴- بیوماس
۱-۳-۵- فتوولتائیک
۱-۳-۶- انرژی گرمایی خورشیدی
۱-۳-۷- دیزل ژنراتور
۱-۳-۸- میکروتوربین
۱-۳-۹- چرخ لنگر
۱-۳-۱۰- توربین های گازی
۱-۴-تأثیر DG بر شبکه توزیع
۱-۴-۱- ساختار شبکه توزیع
۱-۴-۲- تأثیر DC بر ولتاژ سیستم توزیع
۱-۴-۳- تأثیر DG بر کیفیت توان سیستم توزیع
۱-۴-۴- تأثیر DG بر قدرت اتصال کوتاه شبکه
۱-۴-۵- تأثیر DG بر سیستم حفاظت شبکه توزیع
۱-۴-۶- قابلیت اطمینان
۱-۴-۷- ارزیابی کیفی کارآیی مولدهای DG در شبکه
۱-۴-۸- شاخص بهبود پروفیل ولتاژ
۱-۴-۹- شاخص کاهش تلفات
۱-۴-۱۰- شاخص کاهش آلاینده های جو
۱-۵- روش های مکان یابی DG
۱-۵-۱- روش های تحلیلی
۱-۵-۲- روش های مبتنی بر برنامه ریزی عددی
۱-۵-۳- روش های مبتنی بر هوش مصنوعی
۱-۵-۴- روش های ابتکاری
۱-۶- جمع بندی
فصل دوم
روشهای جایابی بهینه خازن
۲-۱- مقدمه
۲-۲- دسته بندی روشهای جایابی بهینه خازن
۲-۲-۱-روشهای تحلیلی
۲-۲-۱-۱- نمونه ای یک روش تحلیلی
۲-۲-۲- روشهای برنامه ریزی عددی
۲-۲-۳- روشهای ابتکاری
۲-۲-۴- روشهای مبتنی بر هوش مصنوعی
۲-۲-۴-۱- روش جستجو تابو
شکل ۲-۵ –فلوچارت حل به روش تابو
۲-۲-۴-۲- استفاده از تئوری مجموعه های فازی
۲-۲-۴-۲-۱- نظریه مجموعه های فازی
۲-۲-۴-۲-۲- تعریف اساس و عمگرهای مجوعه های فازی
۲-۲-۴-۲-۳- روش منطق فازی
۲-۲-۴-۳- روش آبکاری فولاد
۲-۲-۴-۴- الگوریتم ژنتیک
۲-۲-۴-۴-۱- پیدایش الگوریتم ژنتیک
۲-۲-۴-۴-۲- مفاهیم اولیه در الگوریتم ژنتیک
۲-۲-۴-۵- شبکه های عصبی مصنوعی
۲-۳- انتخاب روش مناسب
۲-۳-۱- نوع مساله جایابی خازن
۲-۳-۲- پیچیدگی مساله
۲-۳-۳- دقت نتایج
۲-۳-۴- عملی بودن
فصل سوم
تاثیر منابع تولید پراکنده در شبکه های فشار متوسط
۳-۱-مقدمه
۳-۲-مطالعه بر روی یک شبکه نمونه
نتیجه گیری
مراجع
فهرست اشکال
شکل۲-۱ – الف) یک فیدر توزیع ب) پروفیل جریان راکتیو
شکل ۲-۲-پروفیل جریان فیدر پس از نصب خازن
شکل۲-۳-پروفیل جریان پس از نصب سه خازن
شکل ۲-۴-فلوچارت حل جایابی بهینه خازن با روش ابتکاری
شکل ۲-۵ –فلوچارت حل به روش تابو
شکل ۲- ۶ – فلوچارت حل مسئله جایابی خازن مبتنی بر برنامه ریزی پویای فازی
شکل ۲-۷ – فلوچارت حل جایابی بهینه خازن با روش آبکاری فولاد (S.A)
شکل۲- ۸ – مراحل مختلف الگوریتم ژنتیک
شکل ۳-۱
فهرست جداول
جدول ۱- ۱
جدول ۱-۲ طبقه بندی از تولیدات پراکنده
جدول ۳-۱ فناوریهای به کار رفته در تولیدات پراکنده
جدول۴-۱ تا ثیرات برخی از فناوری های تولیدانرژی الکتریکی بر محیط زیست
جدول ۵-۱تعریف کشورهای مختلف از تولیدات پراکنده
جدول ۶-۱سیاست های موجوددرکشورهای مختلف
جدول۷-۱ مقایسه برخی تولیدات پراکنده
جدول ۸-۱ جریان های خطای ترمینال DG برحسب تکنولوژی اتصال
نعداد صفحات : 73
فرمت فایل :Word ورد doc و با قابلیت ویرایش کامل و شخصی سازی