رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

کدهای بلوکی و کدهای کانولوشن

امروزه دو نوع عمومی از کدها استفاده می شود کدهای بلوکی و کدهای کانولوشن انکدینگ یک کد بلوکی را به تر تیبی از اطلاعات در قالب بلوکهای پیغام از k بیت اطلاعات برای هر کدام تقسیم می کند یک بلوک پیغام با k مقدار باینری که بصورت u(u1u2…uk) نشان داده می شود ، یک پیغام نامیده می شود در کدینگ بلوکی از سمبل u جهت نشان دادن k بیت پیغام از کل ترتیب اطلا
دسته بندی کامپیوتر و IT
بازدید ها 1
فرمت فایل doc
حجم فایل 2070 کیلو بایت
تعداد صفحات فایل 48
کدهای بلوکی و کدهای کانولوشن

فروشنده فایل

کد کاربری 2106
کاربر

کدهای بلوکی و کدهای کانولوشن

فصل اول : کدهای بلوکی و کدهای کانولوشن

1-1- مقدمه :

امروزه دو نوع عمومی از کدها استفاده می شود : کدهای بلوکی و کدهای کانولوشن . انکدینگ یک کد بلوکی را به تر تیبی از اطلاعات در قالب بلوکهای پیغام از k بیت اطلاعات برای هر کدام تقسیم می کند . یک بلوک پیغام با k مقدار باینری که بصورت u=(u1,u2,…,uk) نشان داده می شود ، یک پیغام نامیده می شود . در کدینگ بلوکی از سمبل u جهت نشان دادن k بیت پیغام از کل ترتیب اطلاعات استفاده می گردد .

تعداد کل بیت های پیغام متفادت موجود پیغام است . انکدر هر پیغام u را بطور غیر وابسته ، بصورت یک n تایی v=(v1,v2,…,vn) که کلمه کد (codeword) نامیده می شود ، ارسال می دارد . در کدینگ بلوکی سمبل v برای مشخص کردن سمبل بلوک از کل ترتیب انکد شده استفاده می گردد .

از پیغام قابل ساخت ، کلمه کد مختلف در خروجی انکدر قابل ایجاد است . این مجموعه کلمات کد با طول n یک کد بلوکی (n,k) نامیده می شود. نسبت R=k/n نرخ کد نامیده می شود . نرخ کد می تواند تعداد بیتهای اطلاعات که انکد می شود را در هر سمبل انتقال یافته ،محدود کند . در حالتیکه n سمبل خروجی کلمه کد که فقط به k بیت ورودی پیغام وابسته باشد ، انکدر را بدون حافظه (memory-less) گویند . انکدر بدون حافظه با ترکیبی از مدارات لاجیک قابل ساخت یا اجرا است . در کد باینری هر کلمه کد v باینری است . برای اینکه کد باینری قابل استفاده باشد ، بعبارت دیگر برای داشتن کلمات کد متمایز باید یا باشد . هنگامیکه k

چگونگی انتخاب بیت های افزونگی تا اینکه ارسال قابل اطمینانی در یک کانال نویزی داشته باشیم از اصلی ترین مسائل طراحی یک انکدر است .

انکدر یک کد کانولوشن نیز به همان ترتیب ، k بیت بلوکی از ترتیب اطلاعات u را می پذیرد و ترتیب انکد شده ( کلمه کد ) v با n سمبل بلوکی را می سازد . باید توجه کرد که در کدینگ کانولوشن سمبل های u و v جهت مشخص کردن بلوکهای بیشتر از یک بلوک استفاده می گردند . بعبارت دیگر هر بلوک انکد شده ای نه تنها وابسته به بلوک پیغام k بیتی متناظرش است ( در واحد زمان )‌ بلکه همچنین وابسته به m بلوک پیغام قبلی نیز می باشد . در این حالت انکدر دارای حافظه (memory ) با مرتبه m است .

محصول انکد شده ترتیبی است از یک انکدر k ورودی ، n خروجی با حافظه مرتبه m که کد کانولوشن (n,k,m) نامیده می شود . در اینجا نیز R=k/n نرخ کد خواهد بود و انکدر مذکور با مدارات لاجیک ترتیبی قابل ساخت خواهد بود . در کد باینری کانولوشن ، بیت های افزونگی برای تقابل با کانال نویزی می تواند در حالت k

معمولاً k و n اعداد صحیح کوچکی هستند و افزونگی بیشتر با افزایش مرتبه حافظه از این کدها بدست می آید . و از این رو k و n و در نتیجه R ثابت نگه داشته می شود .

اینکه چگونه استفاده کنیم از حافظه تا انتقالی قابل اطمینان در یک کانال نویزی داشته باشیم ، از مسائل مهم طراحی انکدر ها محسوب می شود

جهت دریافت فایل کدهای بلوکی و کدهای کانولوشن لطفا آن را خریداری نمایید


کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند ام
دسته بندی کامپیوتر و IT
بازدید ها 0
فرمت فایل doc
حجم فایل 1743 کیلو بایت
تعداد صفحات فایل 56
کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

فروشنده فایل

کد کاربری 2106
کاربر

کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

فهرست مطالب

عنوان صفحه

کاربرد تبدیل لاپالس در تحلیل مدار...................................................................... 1

16-1- مقدمه........................................................................................................ 1

16-2- عناصر مدار در حوزة s........................................................................... 2

16-3- تحلیل مدار در حوزة s.............................................................................. 9

16-4 چند مثال تشریحی....................................................................................... 10

16-5 تابع ضربه در تحلیل مدار........................................................................... 28

16-6 خلاصه........................................................................................................ 46

17-5- تابع تبدیل و انتگرال کانولوشن................................................................. 48

مراجع............................................................................................ 64

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.

16-2- عناصر مدار در حوزة s

روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.

نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم

(16-1)

از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .

(16-2) V=RI

که در آن

بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.

مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.

القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

جهت دریافت فایل کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن لطفا آن را خریداری نمایید